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A novel tool, called a genetic neural network (GNN), has been developed for obtaining
quantitative structure-activity relationships (QSAR) for high-dimensional data sets (J. Med.
Chem. 1996, 39, 1521-1530). The GNN method uses a neural network to correlate activity
with descriptors that are preselected by a genetic algorithm. To provide an extended test of
the GNN method, the data on 57 benzodiazepines given by Maddalena and Johnston (MJ; J.
Med. Chem. 1995, 38, 715-724) have been examined with an enhanced version of GNN, and
the results are compared with the excellent QSAR of MJ. The problematic steepest descent
training has been replaced by the scaled conjugate gradient algorithm. This leads to a
substantial gain in performance in both robustness of prediction and speed of computation.
The cross-validation GNN simulation and the subsequent run based on an unbiased and more
efficient protocol led to the discovery of other 10-descriptor QSARs that are superior to the
best model of MJ based on backward elimination selection and neural network training. Results
from a series of GNNs with a different number of inputs showed that a neural network with
fewer inputs can produce QSARs as good as or even better than those with higher dimensions.
The top-ranking models from a GNN simulation using only six input descriptors are presented,
and the chemical significance of the chosen descriptors is discussed. The statistical significance
of these GNN QSARs is validated. The best QSARs are used to provide a graphical tool that
aids the design of new drug analogues. By replacing functional groups at the 7- and 2′-positions
with ones that have optimal substituent parameters, a number of new benzodiazepines with
high potency are predicted.

Introduction

A new method for quantitative structure-activity
relationships (QSAR), called genetic neural networks
(GNN), has been described recently.1 In GNN, selec-
tions of descriptors are made using a genetic algorithm
(GA). This facilitates rapid discovery of optimal solu-
tions through its evolutionary and parallel features.
Correlations of biological activities with these descrip-
tors are performed by a neural network, whose nonlin-
ear attribute has an advantage in modeling complex
relationships. In the published study, we showed that
GNN is superior in one application (the Selwood data
set2) to genetic multiple linear regressions3,4 and other
methods,2,5 one of which makes use of neural networks5
but not a GA for property selection. In this paper we
apply the GNN method to a series of benzodiazepines
(BZs) which have played an important role in medicinal
chemistry over 3 decades6-14 and have been used
recently as a nucleus for solid-state combinatorial
synthesis.15,16 They are of special interest because of
the putative role of BZs in the mammalian central
nervous system, which derives from their interaction
with a macromolecular supercomplex involving their
receptor and the GABAA receptor. The action of GABA,
a major inhibitory neurotransmitter, has been shown
to be modulated upon the binding of various BZs.
Because of this regulatory role and the exceptional

tolerance to BZs even at high doses, they have become
an important class of therapeutic agents with wide-
spread applications in treatments related to anxiety and
emotional disorders.8,10

A GNN study of the BZs is an excellent test applica-
tion of the GNN method because a wealth of chemical
and pharmacological information is available on this
series of compounds, and they have been used in many
QSAR and SAR studies.17-20 Maddalena and Johnston
(MJ) obtained excellent results in a recent QSAR
study.20 They considered a homogeneous set of 57
classical 1,4-benzodiazepin-2-ones (1,4-BZs) that had
well-defined binding affinities (log IC50) for the BZ/
GABAA receptor in a competition assay against tritiated
diazepam.6,10 The substitution patterns of these com-
pounds were described by several commonly used sub-
stituent constants at each of the six variable positions
(Figure 1).21 A backward elimination strategy was
applied to discard descriptors that were nonessential,
and a steepest descent (SD) back-propagation neural
network was used to derive QSAR models. The final
10-descriptor QSAR proposed by MJ had high values
of correlation coefficients for both training (0.938) and
cross-validation (0.896). The availability of the BZ data
and their analysis provide the opportunity to test the
GNNmethodology because this data set is considerably
larger than the one used in the initial application.1,2
Further, the QSAR results of MJ are of high quality,
making possible a stringent comparison. One question
is whether the selection of descriptors made by MJ is
optimal.
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In addition to the BZ application, we present a
methodological improvement of the neural network
simulator that overcomes the problem associated with
multiple local minima. We also propose a more efficient
GNN protocol that is used to obtain models with high

predictivity. Some new and simpler QSAR models for
the BZs are suggested, and the reliability of such models
is validated with a number of statistical tools. New BZ
analogues are designed by optimizing the values of
chosen input descriptors, and the predicted activities
of the new compounds are determined by the refined
GNN QSARs.

Methods
Data Set. The 57 BZs used in the study of MJ were

examined in the present work (Table 1). These BZs
contain six variable substituent positions (Figure 1),
though the data are extensive for only three positions
(R7, R1, and R2′). Each substituent is parameterized by
seven physicochemical descriptors. The values of dipole

Figure 1. 1,4-Benzodiazepin-2-ones considered in this study.
The six substituent positions are R7 and R8 in the A-ring, R1

and R3 in the B-ring, and R2′ and R6′ in the C-ring.

Table 1. Data Seta 20

ID name R7 R1 R2′ R6′ R3 R8 log IC50

1 Ro 05-3061 F H H H H H 1.602
2 Ro 05-4865 F CH3 H H H H 1.230
3 Ro 05-6820 F H F H H H 0.869
4 Ro 05-6822 F CH3 F H H H 0.708
5 nordazepam Cl H H H H H 0.973
6 diazepam Cl CH3 H H H H 0.908
7 Ro 05-3367 Cl H F H H H 0.301
8 delorazepam Cl H Cl H H H 0.255
9 Ro 07-9957 I CH3 F H H H 0.462
10 Ro 05-2904 CF3 H H H H H 1.114
11 Ro 14-3074 N3 H F H H H 0.724
12 nitrazepam NO2 H H H H H 1.000
13 Ro 05-4435 NO2 H F H H H 0.176
14 flunitrazepam NO2 CH3 F H H H 0.580
15 clonazepam NO2 H Cl H H H 0.255
16 Ro 05-4082 NO2 CH3 Cl H H H 0.342
17 Ro 05-3590 NO2 H CF3 H H H 0.544
18 Ro 20-7736 NHOH CH3 F H H H 1.982
19 Ro 05-3072 NH2 H H H H H 2.587
20 Ro 05-4318 NH2 CH3 H H H H 2.663
21 Ro 20-1815 NH2 CH3 F H H H 1.813
22 Ro 05-4619 NH2 H Cl H H H 1.875
23 Ro 05-4528 CN CH3 H H H H 2.580
24 Ro 20-2541 CN CH3 F H H H 1.477
25 Ro 20-2533 CH2CH3 H H H H H 1.556
26 Ro 20-5747 CHdCH2 H H H H H 1.380
27 Ro 20-5397 CHO H H H H H 1.633
28 Ro 20-3053 COCH3 H F H H H 1.255
29 Ro 05-2921 H H H H H H 2.544
30 Ro 05-4336 H H F H H H 1.322
31 Ro 05-4520 H CH3 F H H H 1.146
32 Ro 05-4608 H CH3 Cl H H H 0.580
33 halazepam Cl CH2CF3 H H H H 1.964
34 Ro 06-9098 NO2 CH2OCH3 H H H H 2.633
35 Ro 20-1310 Cl C(CH3)3 H H H H 2.792
36 Ro 07-2750 Cl (CH2)2OH F H H H 1.389
37 Ro 22-4683 NO2 C(CH3)3 F H H H 2.477
38 Ro 07-4419 H H F F H H 1.279
39 Ro 07-3953 Cl H F F H H 0.204
40 Ro 07-4065 Cl CH3 F F H H 0.613
41 Ro 07-5193 Cl H Cl F H H 0.477
42 Ro 22-3294 Cl H Cl Cl H H 0.845
43 Ro 07-5220 Cl CH3 Cl Cl H H 0.740
44 Ro 13-3780 Br CH3 F F H H 0.380
45 Ro 11-4878 Cl H F H (S)-CH3 H 0.544
46 meclonazepam NO2 H Cl H (S)-CH3 H 0.079
47 Ro 11-6896 NO2 CH3 F H (S)-CH3 H 0.845
48 Ro 06-7263 Cl Cl H H rac CH3 H 1.690
49 oxazepam Cl H H H rac OH H 1.255
50 temazepam Cl CH3 H H rac OH H 1.204
51 lorazepam Cl H Cl H rac OH H 0.544
52 Ro 20-7078 Cl H F H rac Cl H 0.724
53 Ro 07-6198 H H F F H Cl 1.447
54 Ro 20-8895 H H F H H CH3 1.279
55 Ro 22-6762 Cl CH3 H H H Cl 1.602
56 Ro 20-8065 Cl H F H H Cl 0.556
57 Ro 20-8552 CH3 H F H H Cl 1.146

a See Figure 1 for the substitution positions

Genetic Neural Networks for QSAR Journal of Medicinal Chemistry, 1996, Vol. 39, No. 26 5247



moment (µ), lipophilicity (π), molar refractivity (MR),
polar constant (F), resonance constant (R), and Ham-
mett meta constant (σm) and para constant (σp) for the
functional groups present in the data set are listed in
Table 2. The values are taken from MJ and refs 22 and
23. Table 3 is a correlation matrix which shows the
pairwise correlation coefficients between the descriptors
based on the variation within the substituents that are
listed in Table 2. It indicates that the hydrophobic π
and the steric MR are independent but the remaining
five electronic descriptors are somewhat correlated. A
complete cross-correlation matrix for the QSAR param-
eters by position of substitution is also available as
Supporting Information. The additional random input
variables introduced in the study of MJ were not used
here, i.e., only the 42 physically meaningful descriptors
were considered. The input and output vectors of the
data set were scaled to take values between 0.1 and 0.9.
Neural Network. The most popular type of neural

networks used in QSAR studies have been based on SD
back-propagation training24 because of ease of imple-
mentation. However, this kind of algorithm generally
has a poor convergence behavior. It is also known that
its success often depends on the setting of a number of
user-defined parameters such as learning rates and
momentum terms.25 Furthermore, simple back-propa-
gation has a weakness in dealing with multiple local
minima, and in some cases satisfactory training cannot
be achieved, e.g., neural networks with weights that are
initialized by different random seeds can lead to solu-
tions of disparate qualities. One solution to this kind

of dependency is to perform multiple simulations with
a number of different seeds on an otherwise identical
system. Only the most optimized solution, judged in
terms either of its training or cross-validated error, is
accepted as the final output.
To avoid these problems we have employed an alter-

native training paradigm that is naturally more deter-
ministic. Recent advances in neural network research
indicate that optimization algorithms that include
pseudo-second-derivative information are more capable
of dealing with local minima. One such algorithm, the
scaled conjugate gradient (SCG) method,26 has been
incorporated into the neural network simulator. A
recent example of the utility of the SCG method has
been given in a neural network prediction study of
secondary structure in proteins.27 Unlike SD algo-
rithms, the two scalar parameters (σ and λ1) which
specify step size in the SCG implementation are not
crucial for its success.26 In the present analysis they
were set at σ ) 1 × 10-5 and λ1 ) 1 × 10-7, which are
in accord with the ranges recommended by Møller.26 In
all simulations the weights of networks were initialized
in the range of (1.0. Multiple random number seeds
were employed for the first SCG benchmark study.
Since no dependence on the random seed was found, a
single seed was used for all the other applications.
Genetic Algorithm. In this study the backward

elimination selection strategy used by MJ was replaced
by a GA.28-30 Although two different GAs were tried
in the earlier work,1 only the evolutionary programming
(EP) algorithm was employed here to choose the impor-
tant physicochemical descriptors because previous stud-
ies showed that it gave an optimal set of solutions.1,4
The details of EP implementation are given elsewhere.1,4
A population of 200 individuals was generated for each
of the GNN runs. Single-point mutations were used for
a total of 50 reproduction cycles.
Statistical Measures. Correlation coefficients are

used to give a measure of statistical fit in the QSAR
models. Rt is the correlation coefficient between the

Table 2. Substituent Constantsa

substituent µ π MR F R σm σp

Br -1.57 0.86 8.88 0.44 -0.17 0.39 0.23
C(CH3)3 0.52 1.98 19.62 -0.07 -0.13 -0.10 -0.20
CF3 -2.61 0.88 5.02 0.38 0.19 0.43 0.54
CHdCH2 0.20 0.82 10.99 0.07 -0.08 0.05 -0.02
CH2CF3 -2.07 1.34 9.64 0.34 0.09 0.40 0.50
CH2CH2OH -0.60 -0.31 12.10 0.01 -0.29 -0.05 -0.23
CH2OCH3 -1.01 -0.78 12.07 0.01 0.02 0.02 0.03
CHO -3.02 -0.65 6.88 0.31 0.13 0.35 0.42
Cl -1.59 0.71 6.03 0.41 -0.15 0.37 0.23
CN -4.08 -0.57 6.33 0.51 0.19 0.56 0.66
COCH3 -2.90 -0.55 11.18 0.32 0.20 0.38 0.50
CH2CH3 0.39 1.02 10.30 -0.05 -0.10 -0.07 -0.15
F -1.43 0.14 0.92 0.43 -0.34 0.34 0.06
H 0.00 0.00 1.03 0.00 0.00 0.00 0.00
I -1.36 1.12 13.94 0.40 -0.19 0.35 0.18
CH3 0.36 0.56 5.65 -0.04 -0.13 -0.07 -0.17
N3 -1.56 0.46 10.20 0.30 -0.13 0.27 0.15
NH2 1.53 -1.23 5.42 0.02 -0.68 -0.16 -0.66
NHCOCH3 -3.65 -0.97 14.93 0.28 -0.26 0.21 0.00
NHOH -0.14 -1.34 7.22 0.06 -0.40 -0.04 -0.34
NO2 -4.13 -0.28 7.36 0.67 0.16 0.71 0.78
OH -1.59 -0.67 2.85 0.29 -0.64 0.12 -0.37
OCF3 -2.36 1.04 7.86 0.38 0.00 0.38 0.35
SO2F -4.59 0.05 8.65 0.75 0.22 0.80 0.91

a The first 22 substituents are taken from Table 2 in MJ.20 The substituent constants of the final two substituents that are used in the
new compounds are taken from refs 22 and 23.

Table 3. Correlation (R2) Matrix for the Seven
Physicochemical Parameters Listed in Table 2

µ π MR F R σm σp

m 1
p 0.03 1
MR 0.00 0.09 1
F 0.74 0.00 0.04 1
R 0.35 0.07 0.02 0.17 1
σm 0.81 0.01 0.02 0.94 0.37 1
σp 0.73 0.03 0.00 0.66 0.75 0.86 1
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calculated activities and the observed biological activity
based on the result of neural network training. Rcv is
the correlation coefficients between the predicted activi-
ties and the observed activities based on a leave-one-
out (LOO) cross-validation procedure.

Results
Comparison of the SD and the SCG Neural

Networks. The most predictive 10-descriptor QSAR
model reported by MJ used a set of descriptors derived
from a backward elimination scheme and a neural
network that contained 10 input, 3 hidden, and 1 output
nodes, i.e., a topology of 10-3-1. This model (MJ 10-3,
Table 4) was used as a benchmark for the new SCG
neural network simulator. Both the SD-optimized
neural network used in the original GNN study1 and
the new SCG-based neural network (also with a 10-3-1
topology) were used to formulate QSARs with this
selection of descriptors. The SD and SCG calculations
were repeated 500 times using different initial random
number seeds. The distributions of the resulting Rt and
Rcv for the two sets of runs are shown in Figure 2. It is
evident that the SCG simulator is much superior to the
SD-based method. Less than one-half of the SD runs

(46%) achieved satisfactory training (Rt > 0.75). Fur-
thermore the correlation coefficients from these suc-
cessful SD-based trials spanned a very wide range which
introduces significant uncertainty in the results. This
contrasted sharply with the SCG result. Every SCG run
led to a low training and cross-validation error. Their
Rt values had a high average of 0.954 and, more
importantly, a very low standard deviation of 0.007.
This was mirrored by a narrow distribution for Rcv,
which had an average of 0.901 and a small standard
deviation of 0.009.
The superiority of the SCG-based method is clear.

Further, the results are such that the standard devia-
tions for Rt and Rcv become a useful measure for
determining whether any change in predictivity of a new
model is statistically significant. Also, the consistency
of the runs with different seeds shows that a solution
provided by a single SCG simulation could be used
directly without the need for multiple neural network
runs. Figure 3a shows the averages and the standard
deviations of calculated activities for the 57 BZs from
the above 500 SCG training runs, and Figure 3b shows
the predicted activities from cross-validations. The
standard deviations of these predictions were small (on
average 0.06 for training and 0.08 for cross-validation).
Another advantage of the SCG algorithm was its

speed. The relative convergence behavior of the two
algorithms is shown in Figure 4. It suggests that the
speedup of SCG relative to SD is approximately 2-fold
in this system.
As a control, the original Rcv values of MJ were

reproduced with the SCG algorithm, and the same
results were obtained (SCG 10-3, Table 4). Thus any
observed difference in the predictive performance be-
tween their and our subsequent QSAR models was not
due to neural network implementations or initialization
conditions. The comparison also shows that they did
obtain nearly converged results with a SD implementa-
tion of their neural network. The same seed that was
used in this control run was kept for all the subsequent
neural network simulations.
Cross-Validated Genetic Neural Network. A

GNN (codename C10-3) simulation that maximized the

Table 4. QSAR Models Used in This Studya

R7 R1 R2′ R6′ R3 R8

model Rt Rcv p F R σm m p MR σm R p MR F R σm σp m p MR σm σp MR F σm p MR F σm σp

MJ 6-1 0.826 0.776 b b b b b b
10-1 0.938 0.896 b b b b b b b b b b
10-3 0.935 0.899 b b b b b b b b b b

SCG 10-3 0.948 0.897 b b b b b b b b b b
C10-3 #1 0.970 0.939 b b b b b b b b b b
T10-3 #1 0.969 0.938 b b b b b b b b b b
T6-2 #1 0.954 0.932 b b b b b b

#2 0.953 0.929 b b b b b b
#3 0.954 0.928 b b b b b b
#4 0.953 0.928 b b b b b b
#5 0.952 0.927 b b b b b b
#6 0.951 0.927 b b b b b b
#7 0.956 0.926 b b b b b b
#8 0.952 0.926 b b b b b b
#9 0.951 0.925 b b b b b b
#10 0.954 0.925 b b b b b b

C6-2 #1 0.954 0.932 b b b b b b
#2 0.953 0.929 b b b b b b
#3 0.953 0.928 b b b b b b
#4 0.954 0.928 b b b b b b

a See Figure 1 for the positions of substitution.

Figure 2. Distribution of the values of correlation coefficients
for 500 trials of SD and SCG neural network simulation using
different random seeds. The sharp peaks corresponding to the
SCG set indicate that this type of neural network is more
deterministic than its SD-based counterpart (see text).
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value of Rcv was performed with the SCG 10-3-1 neural
network and the EP algorithm. A population of 200
models was generated. After 50 generations, highly
predictive QSARs were found. The best model (C10-3
#1, Table 4) only had four descriptors in common with
the MJ selection (π7, F7, MR1, and MR2′) and did not
contain a substituent constant for position 3. The
increase in Rcv of this model (0.939) relative to the best
MJ model (0.897) was significant because of the small
uncertainty in the neural network outputs. From the
comparison of SD and SCG results for the MJ model

(see above), this increase arises from a better selection
of descriptors and not from the more efficient neural
network. The best MJ model was not discovered by our
analysis. This is in accord with the result that even
the last of the 200 GNNmodels had a Rcv value of 0.924,
still considerably better than that of the MJ model. The
additional random inputs that were introduced in the
MJ study were not used because they did not appear in
the final MJ model, and furthermore we did not believe
such nonphysical descriptors would play a useful role
in the GNN simulation.
Alternative Protocol To Obtain Highly Predic-

tive Models. Despite the use of a much improved
neural network optimizer, a full cross-validated GNN
simulation was computationally expensive. The C10-3
runs required nearly 41/2 days of CPU time on a fast
workstation.31 To put GNN on a more practical basis,
it was clearly desirable to devise a new protocol that
would substantially decrease the computational cost
while producing predictive QSARs of equal quality. An
alternative GNN procedure was proposed that led to a
significant reduction of computational cost. In the
previous GNN paper, we suggested the construction of
a separate test set from existing training data and used
the accuracy of test set prediction as a criterion for
determining the fitness of the individuals in a GA.1 In
this way, the expensive cross-validation that was re-
quired in the current protocol could be avoided. How-
ever, a potential drawback of this approach was the
difficulty in forming an objective test set, i.e., it was
conceivable that the test set compositions might bias
the final outcome.
Here we describe an unbiased procedure to obtain

models with high predictivity. The previous C10-3
simulation evolved in such a way that the Rcv values of
the QSAR models were being maximized so that the
most predictive models were discovered at the end of
the GNN run. Figure 5a is a plot of the values of Rcv
and Rt from these 200 models. Although there was no
strong correlation (R ) 0.36) between the two correla-
tion coefficients, it was clear that sufficient neural
network training is a prerequisite of high predictivity.
All predictive models had high Rt values, and over 96%
of them were above 0.95. Thus, it seemed reasonable
to expect that if one would carry out a GNN simulation
that optimized on the value of Rt, a number of these
highly correlated models (high Rt) found at the end
would also be highly predictive (high Rcv). This is the
basis of the new GNN protocol. A GNN simulation
(T10-3) that optimized the values of Rt was performed
first. Full cross-validations were done to the QSAR
models only at the final generation to obtain Rcv values.
These QSARs were then ranked according to their
predictivity (Rcv values).
The new protocol was applied to the present data set

with the same (10-3-1) neural network topology (code-
name T10-3). This simulation took 4.1 CPU h,31 which
was only a small fraction of the time (41/2 days) required
for a full cross-validation procedure. The best QSAR
values (Rcv ) 0.938) found by the T10-3 simulation are
also shown in Table 4. The fact that this model was
different from the best one of C10-3 meant that both of
the genetic searches were limited in scope. This is not
surprising because of the very small sampling size32 (1.0
× 105) relative to the number of distinct combinations33

Figure 3. (a) Calculated activity from training and (b)
predicted activity from cross-validation versus observed activ-
ity from the best 10-descriptor MJmodel. The figures are made
by averaging all 500 SCG trials (see text), and the error bar
corresponds to one standard deviation from the average value.

Figure 4. Relative efficiency of the SD (- -) and SCG (s)
training algorithms for 10-3-1 neural networks. The plot shows
the training profiles of a successful SD attempt and a typical
SCG run.
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(1.5 × 109). Nevertheless, it was encouraging that the
two top models converged to a similar level of predic-
tivity, i.e., both of them appear to be near the true
optimum for the available data. Figure 5b shows the
values of Rcv as a function of model rank for the two
sets of GNN simulations. Only when models beyond a
rank of 20 are needed does C10-3 become considerably
better than T10-3. Nevertheless, for most practical
purposes, only the top five or so GNN models would
normally be considered in further data analysis.
The most important finding in the present context is

that there was no obvious advantage of C10-3 over the
much faster T10-3 for obtaining highly predictive mod-
els. A simple analysis showed that the time advantage
of the new protocol over that of full cross-validation was
a factor of N × G/(N + G), where N ) number of
compounds in the data set and G ) number of evolu-
tionary generations. The current GNN system had N
) 57 and G ) 50, and we would therefore expect T10-3
to run about 27 times faster than C10-3. This was
indeed the observed ratio in CPU usage between the
two runs.
Variation of Number of Inputs. Another way to

save CPU time was to minimize the size of the neural
network without losing effectiveness. This has the
additional advantage that the risk of overfitting due to

a limited data set is reduced. The new protocol was
efficient enough so that a large number of GNN simula-
tions could be performed to investigate the effect of
variation in network topology. With the number of
hidden nodes reduced to two, a series of TX-2 simula-
tions that varied the number of input nodes (X) was
made.
Figure 6 shows the values of Rcv of the best models

in each of these runs. This plot demonstrates that Rcv
does not appear to increase significantly with the
number of input nodes after a sharp initial rise. It was
noteworthy that the best 6-descriptor QSAR (Rcv )
0.932) obtained by GNN was almost as predictive as its
10-descriptor counterpart (Rcv ) 0.938). This disagrees
with the result of MJ, who had found a substantial
decrease in the predictivity of their 6-descriptor QSAR
(Rcv ) 0.776) relative to the 10-descriptor QSAR (Rcv )
0.896). We attribute the difference in performance
between the MJ and the GNN 6-descriptor QSARs to
the following factors. The MJ selection procedure
permitted a very limited scope for coupling between
descriptors, and some of the potentially important
descriptors might have been incorrectly eliminated due
to redundancy in the early stages. Furthermore, MJ
required the inclusion of at least one descriptor for each
of the substituent positions. This could result in
redundant or noisy signals when binding affinity was
not related to a given substituent position, e.g., the very
predictive C10-3 model did not require a descriptor in
the 3-position.
The negligible difference in performance between the

6-descriptor and 10-descriptor GNNmodels set the limit
of significant information of the data set. Besides faster
computations, another advantage in dealing with a
smaller set of input descriptors is that subsequent
analysis can be greatly simplified. One can focus on the
few key elements that appear to determine the biological
activities. For this reason our subsequent work was to
be based upon the best 6-descriptor models found by our
T6-2 GNN run, which only took 3.3 CPU h.31
Analysis of the Chosen Descriptors in T6-2 GNN

Models. The top-ranking 6-descriptor QSARs emerged
from the T6-2 GNN simulation are shown in Table 4
(T6-2 #1-10). As already discussed in the preceding
section, the current result represented a major improve-
ment over the MJ 6-descriptor model derived from a
pruning procedure. The gain in correlation and predic-
tivity was substantial and significant. Moreover, the
T6-2 GNN models were also better than the best MJ
10-descriptor model.
Some interesting similarities and differences emerged

when our GA-derived selections were compared with the

Figure 5. (a) Correlation coefficients in training (Rt) and
cross-validation (Rcv) plotted against their ranks for the 200
models generated in the C10-3 GNN simulation. It shows that
the corresponding Rt values for the highly predictive models
are generally high (see text). (b) Plot of cross-validated
correlation coefficients (Rcv) for the C10-3 and T10-3 GNN
simulations as a function of their rank. The quality of
prediction given by both sets is essentially the same when the
top models are considered. C10-3 becomes considerably better
than T10-3 only when models beyond a rank of 20 are required.

Figure 6. Variation of Rt and Rcv as a function of the number
of input nodes used in the GNN simulation: (b) training and
(O) cross-validation.
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MJ set. For substituent position 7, there was agreement
with the MJ study that π7 was an essential descriptor.
It was also evident that a second descriptor from this
position was necessary. GNN selected either F7 or σm7.
The sets of values from the two descriptors encoding
the R7 substituents were highly correlated (R2 ) 0.96),
and it was appropriate that GNN never included both
of them in the same model. Interestingly MJ had the
same three descriptors in the final elimination rounds
at this position. However, it was not obvious from their
procedure how many of the three should be included in
the QSAR model.
MJ used three descriptors to encode the chemical

environment at position 1. However, the GNN analysis
suggested that only one of them, MR1, was the neces-
sary and sufficient determinant at this position. Any
additional descriptor at this position seemed superflu-
ous. This suggested that a good steric fit of the R1
substituent with the receptor site is the fundamental
factor in binding, and hydrophobic or electronic effects
at this position are of lesser importance.
For position 2′, instead of either MR2′ or F2′ of the

MJ optimal model, σm2′ was selected by GNN as the
most important parameter for some very predictive
6-descriptor models. In a few cases, σp2′ was also used
to provide complementary information. The importance
of the Hammett parameters gave support to the conclu-
sion that the principal factor governing receptor affinity
at this position was electrostatic in nature.17-20

Since positions 1, 2′, and 7 are the ones for which the
data set is most complete, we did some additional tests
on three important determinants (MR1, σm2′, and π7)
at these positions. Four separate 6-2-1 GNN simula-
tions were made using data sets from which any one or
all of the three descriptors had been removed, and the
results were compared with the top T6-2 model (Rcv )
0.932). Without the MR1 descriptor, Rcv of the most
predictive GNN model reduced significantly to 0.871; a
data set without description involving σm2′ yielded a
maximum Rcv value of 0.925; and without π7 it was
0.911. Finally Rcv dropped to as low as 0.777 when all
three descriptors were absent. This set of results
suggested that π7 and in particular MR1 were the
essential descriptors for obtaining highly predictive
models. On the other hand, it appeared that σm2′ was
not indispensable and could be replaced by other
electronic parameters (such as F2′ as in the MJ model),
though its unanimous preference in all of the top T6-2
models suggested that GNN was sufficiently sensitive
to select it as the principal determinant that worked
best in conjugation with other descriptors.
MJ pointed out that any interpretation of the choices

of the descriptors made at positions 3, 6′, and 8 should
be treated with caution because there was only a limited
range of substituents in the data set. This was reflected
in the GNN result by the fact that there was no
consensus as to which descriptors for these three
positions were particularly useful. In some cases,
descriptors from a given position were not even repre-
sented, e.g., the only pattern found by GNN was that a
descriptor from position 6′ was useful, though not
essential (T6-2 #9 in Table 4 did not contain such
descriptors), for obtaining a high correlation. Both the
R3 and R8 substituents appeared to be less important,
as indicated by a general lack of representation for

descriptors from these two positions though they did
appear in some models. This implies either that the
types of substituents at these positions in the data set
do not play an important role in the activity determi-
nation or that the nature of the descriptors is not
appropriate for describing the interactions between the
substituents and the receptor subsites. In this regard,
it is interesting to note that substitution at the 3-posi-
tion is important, as has been shown by the study of
Blount et al. that the stability of the bioactive conforma-
tion is related to the stereospecificity of the substituent
at this site.34 However, because our activity data are
derived from either the active enantiomer or the racemic
mixture, there is no information on this in the data set.
Finally, the selection of GNN descriptors at position 8
disagrees with the conclusion of MJ that the only useful
input is σp8. Other descriptors such as MR8 and σm8
were also shown to be effective.
Validation of the Best T6-2 GNN Model. Three

independent tests were made to validate the reliability
and the robustness of some of the best T6-2 GNN
models. First, a full cross-validation GNN run (C6-2)
was performed that directly optimized the values of Rcv.
The top four models from this run are listed in Table 4.
The fact that the top three models of T6-2 were among
these four suggested that (unlike the C10-3/T10-3 GNN
simulations) the sampling by the GA was now sufficient
to provide nearly converged sets of optimal models.
The second validation tool was the randomization test

that is often employed.35 The output activities of the
57 BZs were given randomized values, and the resulting
data were trained against real input descriptors. The
rationale behind this test is that the significance of the
real QSAR diminishes if there is a significant correlation
between selected descriptors with these randomized
response variables. Figure 7 shows a plot of Rcv against
Rt for 500 such runs (crosses) using T6-2 #1, together
with the point (circle) corresponding to the real QSAR.
The separation of the true QSAR point from those
corresponding to random response variables provides
compelling evidence that the QSAR is the result of
genuine correlation between the chosen descriptors and
activity. Thus, the probability of chance correlation is
extremely low.36,37
The final measure to verify the usefulness of the

chosen descriptors was to determine the cross-correla-
tion among the chosen input descriptors.20 Table 5
shows the correlation matrix for the six descriptors in

Figure 7. Scatter plot for Rcv against Rt for the real QSAR
(b) and those with randomized activity values (+).
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the T6-2 #1 model. The values of correlation coefficients
were generally small. This suggested that each of the
inputs was independent and furthermore optimally
useful in explaining the variance in binding affinities.
Evaluation of the Top Models. The original GNN

study1 found that a more reliable set of predictions could
be obtained by averaging the outputs of several top-
ranking GNN models. The same averaging was per-
formed here, and the averaged predicted activities of
up to 10 highest ranking T6-2 GNN models were
calculated. The Rcv values of these new composite
models (open circles) were plotted (Figure 8) in conjuga-
tion with theRcv values of the parent GNNmodels (filled
circles). As in the previous case a small gain in
predictivity was observed upon averaging, i.e., the Rcv
value of the composite model peaked when the best
three or four models were combined, and with further
averaging it decreased gradually but remained greater
than any individual GNN model value.
The result indicated that a gain in predictivity with

simultaneous averaging of a few high-performance
QSARs is a general result, though in the present case
the gain was not statistically significant. Nevertheless,
it led us to use of at least the best three T6-2 models
for the design of new compounds.
Minimum Perturbation Approach to Lead Op-

timizations. A good QSAR provides insights into the
underlying physical parameters involved in drug-
receptor binding and indicates the key structural ele-
ments that are required for an active drug. Such
knowledge is of primary interest for the prediction of
new related molecules with high potency as candidates
for synthesis. In this section we use the results to
predict new compounds by a minimum perturbation
approach in which we focus on one substitution at a
time. More time-consuming approaches that take ad-
vantage of the nonlinear and nonadditive attributes of
these GNN QSARs can also be applied. For example,

an exhaustive screening of all six physicochemical
parameters in a given model, or a multivariate experi-
mental design method,35 can be used to search for
improved BZ analogues. However, the clear results
from the simple analysis suggest that it should be a
useful method for predictions.
The three highly predictive T6-2 GNN models (#1-

3) were used for predicting the activity of a number of
new BZs. The most active compound (46) was used as
the template that was subjected to small structural
changes. In this study, new substituents at a given
position were restricted to those that were not signifi-
cantly greater in bulk than the largest known substitu-
ent from a compound of at least moderate activity. This
measure was taken to avoid generating new compounds
that have a poor steric fit with the receptor.
The effect of a given substituent on biological activity

was monitored by a procedure that had appeared in
many neural network studies, including that of
MJ.1,20,38,39 In the current implementation, all but one
of the input parameters was kept at the values that
corresponded to the substituents of the template and
the one remaining input descriptor was varied between
the minimum and the maximum of its known range
from the parameters in Table 2. The resulting plot
provided the functional dependence of the biological
activity on the variable descriptor. The same procedure
was repeated for all input descriptors and for each of
the three models. These functionality plots are shown
in Figure 9.
The only curves with definite minima were the three

corresponding to MR1 (Figure 9a). All three indicated
that the most potent compounds would have a value of
MR1 within the range of 1.0-3.0. The only substituent
with a qualifying MR value is H. This finding is
consistent with Haefely’s analysis that the affinity of
the derivatives carrying a side chain at this position was
always smaller than that of the parent compound.10 On
this basis the template was unmodified at this position.
A similar situation was found for the substituent at
position 8. The plot (Figure 9b) suggests that optimal
activity is reached using substituents that have low
values of both MR8 and σm8. While it was possible to
select new substituents that had either MR or σm values
lower than those of H in the template, the relatively
flat dependence of the curves suggested that the any
change in predicted activity would be minimal. The
additional synthetic effort associated with a regiospecific
substitution at that position appears not to be justified.
At position 3 the methyl group was kept from the
template. This was done because of the lack of repre-
sentation at this position in the three GNN QSARs, i.e.,
there is no indication of explicit influence from any
substituent at this position.
The plot for 2′-position (Figure 9b) suggested that

increases in the Hammett constants would enhance the
predicted receptor affinity. Thus, the template was
modified with a substituent that had higher values of
σm2′ and σp2′ than those of Cl. Three relatively simple
substituents, CN, NO2, and SO2F, were considered.
Their substituent values are listed in Table 2.
An examination of Figure 9a showed that predicted

activity would be also improved by decreases in sub-
stituent parameters (π6′, MR6′, and σp6′) at the 6′-
position. In the template this position was occupied by

Table 5. Correlation (R2) Matrix for the Descriptors in the
Best 6-Descriptors GNN Model

π7 F7 MR1 σm2 π6 MR8

π7 1
F7 0.02 1
MR1 0.00 0.06 1
σm2 0.01 0.00 0.02 1
π6 0.05 0.00 0.00 0.05 1
MR8 0.01 0.07 0.02 0.01 0.00 1

Figure 8. Diagram showing the cross-validated correlation
coefficient plotted against theN-averaged composite model (O)
and the Nth best model (b).
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a hydrogen atom with π ) 0.0, MR ) 1.03, and σp )
0.00. However, because there is no functional group
that has lower substituent parameters in all three
categories than those of hydrogen, substituents with
optimized properties in one or two categories were

considered. The effect on predicted receptor affinity
upon substitution with NH2 (smaller π6′ and σp6′
values) and F (smaller MR6′ value) was examined.
Furthermore, because of equivalency of the 2′- and 6′-
positions in the phenyl ring, it might be worthwhile to
try the three new 2′ substituents (CN, NO2, and SO2F)
as well.
The last, and perhaps the key, position for modifica-

tion was position 7. It is the position for which the most
data are available. The dependency plots of π7, F7, and
σm7 (Figure 9c) were consistent with published analyses
that increases in both lipophilicity and polar effects in
this position increased the receptor affinity.9,17,19,20 The
challenge was to find some simple substituents that
were in the optimal ranges. This was not trivial because
lipophilicity and polarity are naturally anticorrelated,
especially for groups that are small enough. Three
substituents were considered to be suitable candi-
dates: CH2CF3, SO2F, and OCF3.
Based on the above analysis, 11 new compounds (58-

68) deriving from single substituent replacement on the
template were proposed. Their biological activities were
predicted using the best three T6-2 models, and the
results are listed in Table 6. In all cases, replacements
of NO2 by any of the three designed substituents at the
7-position led to an increase in predicted receptor
affinity. This indicated that a good compromise between
lipophilicity and polarity had been achieved. More
pronounced effect on the predicted biological activity
was observed with the compounds that had new 2′
substituents. This was particularly true for NO2 and
SO2F derivatives for which very high activities were
predicted by all three GNN models.
On the other hand, substitution at the 6′-position led

to mixed results. For example, a NH2 substitution (64)
would lead to an increase in receptor affinity according
to two predictions but a significant decrease from the
third. In the other four cases, GNN models indicated
that a decrease in receptor affinity was the more
probable outcome. This seemed to suggest that a second
ortho substitution would have a detrimental effect on
the predicted activity. From published data the exact

Figure 9. Predicted activity as a function of the descriptors
that have been chosen by GNN. The ranges of each physio-
chemical descriptor type shown in the figures are based on
the 22 substituents used in the MJ study (see Table 2). Their
minimum and maximum values are µ (-4.13 to 1.53), π (-1.34
to 1.98), MR (0.92 to 19.62), F (-0.07 to 0.67), R (-0.68 to
0.20), σm (-0.16 to 0.71), and σp (-0.66 to 0.78). The scale is
linear between min and max for each descriptor.

Table 6. New BZs with Designed Substituentsa

substituents predicted activity

ID R7 R1 R2′ R6′ R3 R8 #1 #2 #3

template 46 NO2 H Cl H CH3 H 0.440 0.442 0.385
58 OCF3 H Cl H CH3 H 0.384 0.433 0.350
59 CH2CF3 H Cl H CH3 H 0.365 0.371 0.293
60 SO2F H Cl H CH3 H 0.304 0.314 0.276
61 NO2 H CN H CH3 H 0.237 0.235 0.114
62 NO2 H NO2 H CH3 H 0.135 0.133 0.047
63 NO2 H SO2F H CH3 H 0.090 0.089 0.011
64 NO2 H Cl NH2 CH3 H 0.099 0.785 0.058
65 NO2 H Cl F CH3 H 0.503 0.435 0.439
66 NO2 H Cl CN CH3 H 0.242 0.874 1.382
67 NO2 H Cl NO2 CH3 H 0.332 0.984 1.650
68 NO2 H Cl SO2F CH3 H 0.462 1.133 1.944
69 OCF3 H CN H CH3 H 0.229 0.275 0.119
70 OCF3 H NO2 H CH3 H 0.143 0.186 0.057
71 OCF3 H SO2F H CH3 H 0.103 0.143 0.021
72 CH2CF3 H CN H CH3 H 0.219 0.232 0.092
73 CH2CF3 H NO2 H CH3 H 0.137 0.153 0.038
74 CH2CF3 H SO2F H CH3 H 0.098 0.115 0.006
75 SO2F H CN H CH3 H 0.150 0.153 0.066
76 SO2F H NO2 H CH3 H 0.073 0.074 0.013
77 SO2F H SO2F H CH3 H 0.039 0.040 -0.016
a Predicted activities that are higher than that of the template compound are shown in bold.
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mechanism that makes the di-ortho derivatives less
active is unknown, although it has been suggested that
the second substituent might be in bad steric contact
with its receptor subsite;20 or if Loew’s hypothesis of N4
cationic receptor site was correct,17 the steric hindrance
from the di-ortho-substituted C-ring was so large that
the near-planar geometry that was required for charge
conjugation to N4 could not be attained.
In the preliminary analysis it was predicted that three

new substituents at the 7-and 2′-positions of BZs would
exert a positive influence on receptor affinity. In the
last set of designed compounds (69-77), the nine
different combinations for the two positions were ex-
amined. Their structures and predicted activity are
shown in Table 6. All of them were predicted to be
highly active by the three GNN models, and the
standard deviation of error were no greater than 0.08
in all cases. The first six (58-63) and the final nine
(69-77) compounds are candidates for synthesis.

Concluding Discussion

The GNN method for QSAR has been improved and
tested by a new application. We have introduced a SCG
neural network simulator that makes use of pseudo-
second-derivative information. The superior ability of
the SCG optimizer in dealing with complex multivariate
systems was demonstrated by a multiple-neural net-
work simulation benchmark. It showed that there are
significant improvements in the speed of convergence
and the stability of the solution over the commonly used
SD-based neural networks. Further, a new GNN pro-
tocol that is both effective and unbiased was proposed
to derive highly predictive QSARs. This resulted in a
dramatic speedup in GNN simulations that made pos-
sible a more extensive study of the effect of neural
network topology.
Using a combination of genetic algorithm and neural

network technology, some highly predictive QSARs that
are superior to the optimal model of MJ have been
discovered. By trying a large number of neural network
inputs on this data set, it is found that QSARs with
significantly fewer inputs than the MJ model are
capable of providing as good correlation and predictions.
The significance of the chosen descriptors has been
discussed, and they are compared with previous analy-
ses on the BZs. The best 6-descriptor GNNQSARmodel
has been further analyzed, and they have provided a
basis for the design of novel BZ analogues.
The most active compound in the data set has been

used as a design template, and a minimum perturbation
approach has been applied to suggest new compounds.
A number of substituents were proposed by consider-
ation of functional dependence plots. Upon optimiza-
tions of the properties of the 7 and 2′ substituents,
several new compounds were predicted as highly potent
by the GNN models.
The improved GNN method has been validated by

several statistical measures. Comparison with the
result from a full cross-validation GNN run suggests
that the final QSAR comes close to having optimal
predictivity. By a series of simulations with randomized
response variable, we are able to show that the correla-
tion between the chosen descriptors and the activity is
real and not chance related. Finally, a cross-correlation
analysis of the input matrix showed that no pair of

inputs is correlated and that there is no redundant
information.
This study has shown the general utility of the GNN

methodology in dealing with data sets of high dimen-
sionality.
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